Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Confidence Regions in Wasserstein Distributionally Robust Estimation (1906.01614v4)

Published 4 Jun 2019 in math.ST, math.OC, stat.ML, and stat.TH

Abstract: Wasserstein distributionally robust optimization estimators are obtained as solutions of min-max problems in which the statistician selects a parameter minimizing the worst-case loss among all probability models within a certain distance (in a Wasserstein sense) from the underlying empirical measure. While motivated by the need to identify optimal model parameters or decision choices that are robust to model misspecification, these distributionally robust estimators recover a wide range of regularized estimators, including square-root lasso and support vector machines, among others, as particular cases. This paper studies the asymptotic normality of these distributionally robust estimators as well as the properties of an optimal (in a suitable sense) confidence region induced by the Wasserstein distributionally robust optimization formulation. In addition, key properties of min-max distributionally robust optimization problems are also studied, for example, we show that distributionally robust estimators regularize the loss based on its derivative and we also derive general sufficient conditions which show the equivalence between the min-max distributionally robust optimization problem and the corresponding max-min formulation.

Citations (53)

Summary

We haven't generated a summary for this paper yet.