Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic normality of robust risk minimizers (2004.02328v4)

Published 5 Apr 2020 in math.ST, stat.ML, and stat.TH

Abstract: This paper investigates asymptotic properties of algorithms that can be viewed as robust analogues of the classical empirical risk minimization. These strategies are based on replacing the usual empirical average by a robust proxy of the mean, such as the (version of) the median of means estimator. It is well known by now that the excess risk of resulting estimators often converges to zero at optimal rates under much weaker assumptions than those required by their ``classical'' counterparts. However, less is known about the asymptotic properties of the estimators themselves, for instance, whether robust analogues of the maximum likelihood estimators are asymptotically efficient. We make a step towards answering these questions and show that for a wide class of parametric problems, minimizers of the appropriately defined robust proxy of the risk converge to the minimizers of the true risk at the same rate, and often have the same asymptotic variance, as the estimators obtained by minimizing the usual empirical risk.

Citations (4)

Summary

We haven't generated a summary for this paper yet.