Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Optimizing Gate Decomposition for High-Level Quantum Programming (2406.05581v2)

Published 8 Jun 2024 in quant-ph

Abstract: This paper presents novel methods for optimizing multi-controlled quantum gates, which naturally arise in high-level quantum programming. Our primary approach involves rewriting $U(2)$ gates as $SU(2)$ gates, utilizing one auxiliary qubit for phase correction. This reduces the number of CNOT gates required to decompose any multi-controlled quantum gate from $O(n2)$ to at most $32n$. Additionally, we can reduce the number of CNOTs for multi-controlled Pauli gates from $16n$ to $12n$ and propose an optimization to reduce the number of controlled gates in high-level quantum programming. We have implemented these optimizations in the Ket quantum programming platform and demonstrated significant reductions in the number of gates. For instance, for a Grover's algorithm layer with 114 qubits, we achieved a reduction in the number of CNOTs from 101,252 to 2,684. This reduction in the number of gates significantly impacts the execution time of quantum algorithms, thereby enhancing the feasibility of executing them on NISQ computers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube