Beyond Quantum Shannon: Circuit Construction for General n-Qubit Gates Based on Block ZXZ-Decomposition (2403.13692v2)
Abstract: This paper proposes a new optimized quantum block-ZXZ decomposition method [7,8,10] that results in more optimal quantum circuits than the quantum Shannon decomposition (QSD)[27], which was introduced in 2006 by Shende et al. The decomposition is applied recursively to generic quantum gates, and can take advantage of existing and future small-circuit optimizations. Because our method uses only one-qubit gates and uniformly controlled rotation-Z gates, it can easily be adapted to use other types of multi-qubit gates. With the proposed decomposition, a general 3-qubit gate can be decomposed using 19 CNOT gates (rather than 20). For general $n$-qubit gates, the proposed decomposition generates circuits that have $\frac{22}{48}4n - \frac{3}{2}2n +\frac{5}{3}$ CNOT gates, which is less that the best known exact decomposition algorithm by $(4{n-2} -1)/3$ CNOT gates.
- Alfred V. Aho and Krysta M. Svore “Compiling Quantum Circuits using the Palindrome Transform”, 2003 arXiv:quant-ph/0311008 [quant-ph]
- “Elementary gates for quantum computation” In Physical Review A 52.5 American Physical Society (APS), 1995, pp. 3457–3467 DOI: 10.1103/physreva.52.3457
- G. Cybenko “Reducing quantum computations to elementary unitary operations” In Computing in Science & Engineering 3.2, 2001, pp. 27–32 DOI: 10.1109/5992.908999
- A. De Vos and S. De Baerdemacker “Block-ZXZ synthesis of an arbitrary quantum circuit” In Physical Review A 94.5 American Physical Society (APS), 2016 DOI: 10.1103/physreva.94.052317
- Alexis De Vos and Stijn De Baerdemacker “A Unified Approach to Quantum Computation and Classical Reversible Computation” In Reversible Computation Cham: Springer International Publishing, 2018, pp. 133–143
- “On biunimodular vectors for unitary matrices”, 2015 arXiv:1506.06738 [math.RT]
- Frank Gray “Pulse code communication” U.S. Patent no. 2,632,058, 1953
- Wei Hai-Rui, Di Yao-Min and Zhang-Jie “Modified Khaneja–Glaser Decomposition and Realization of Three-Qubit Quantum Gate” In Chinese Physics Letters 25.9, 2008, pp. 3107 DOI: 10.1088/0256-307X/25/9/004
- Navin Khaneja and Steffen J. Glaser “Cartan decomposition of SU(2n) and control of spin systems” In Chemical Physics 267.1, 2001, pp. 11–23 DOI: https://doi.org/10.1016/S0301-0104(01)00318-4
- E. Knill “Approximation by Quantum Circuits”, 1995 arXiv:quant-ph/9508006 [quant-ph]
- “Efficient Decomposition of Unitary Matrices in Quantum Circuit Compilers” In Applied Sciences 12.2, 2022 DOI: 10.3390/app12020759
- “Experimental comparison of two quantum computing architectures” In Proceedings of the National Academy of Sciences 114.13, 2017, pp. 3305–3310 DOI: 10.1073/pnas.1618020114
- “Near-optimal quantum circuit construction via Cartan decomposition” In Phys. Rev. A 108 American Physical Society, 2023, pp. 052607 DOI: 10.1103/PhysRevA.108.052607
- “Decompositions of general quantum gates”, 2005 arXiv:quant-ph/0504100 [quant-ph]
- “Quantum Circuits for General Multiqubit Gates” In Physical Review Letters 93.13 American Physical Society (APS), 2004 DOI: 10.1103/physrevlett.93.130502
- Ken M. Nakanishi, Takahiko Satoh and Synge Todo “Quantum-gate decomposer”, 2021 arXiv:2109.13223 [quant-ph]
- V.V. Shende, S.S. Bullock and I.L. Markov “Synthesis of quantum-logic circuits” In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25.6 Institute of ElectricalElectronics Engineers (IEEE), 2006, pp. 1000–1010 DOI: 10.1109/tcad.2005.855930
- V.V. Shende, I.L. Markov and S.S. Bullock “Smaller two-qubit circuits for quantum communication and computation” In Proceedings Design, Automation and Test in Europe Conference and Exhibition 2, 2004, pp. 980–985 Vol.2 DOI: 10.1109/DATE.2004.1269020
- Vivek V. Shende, Igor L. Markov and Stephen S. Bullock “Minimal universal two-qubit controlled-NOT-based circuits” In Phys. Rev. A 69 American Physical Society, 2004, pp. 062321 DOI: 10.1103/PhysRevA.69.062321
- “Universal quantum circuit for n-qubit quantum gate: A programmable quantum gate”, 2006 arXiv:quant-ph/0602174 [quant-ph]
- Robert R. Tucci “A Rudimentary Quantum Compiler(2cnd Ed.)”, 1999 arXiv:quant-ph/9902062 [quant-ph]
- Juha J. Vartiainen, Mikko Möttönen and Martti M. Salomaa “Efficient Decomposition of Quantum Gates” In Phys. Rev. Lett. 92 American Physical Society, 2004, pp. 177902 DOI: 10.1103/PhysRevLett.92.177902
- “Optimal quantum circuits for general two-qubit gates” In Physical Review A 69.3 American Physical Society (APS), 2004 DOI: 10.1103/physreva.69.032315
- Farrokh Vatan and Colin P. Williams “Realization of a General Three-Qubit Quantum Gate”, 2004 arXiv:quant-ph/0401178 [quant-ph]
- “Universal quantum circuit for two-qubit transformations with three controlled-NOT gates” In Physical Review A 69.1 American Physical Society (APS), 2004 DOI: 10.1103/physreva.69.010301