Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 51 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Automated Auxiliary Qubit Allocation in High-Level Quantum Programming (2412.20543v1)

Published 29 Dec 2024 in quant-ph and cs.PL

Abstract: We present a method for optimizing quantum circuit compilation by automating the allocation of auxiliary qubits for multi-qubit gate decompositions. This approach is implemented and evaluated within the high-level quantum programming platform Ket. Our results indicate that the decomposition of multi-qubit gates is more effectively handled by the compiler, which has access to all circuit parameters, rather than through a quantum programming API. To evaluate the approach, we compared our implementation against Qiskit, a widely used quantum programming platform, by analyzing two quantum algorithms. Using a 16-qubit QPU, we observed a reduction of 87% in the number of CNOT gates in Grover's algorithm for 9 qubits. For a state preparation algorithm with 7 qubits, the number of CNOT gates was reduced from $2.8\times107$ to $5.7\times103$, leveraging additional Ket optimizations for high-level quantum program constructions. Overall, a quadratic reduction in the number of CNOT gates in the final circuit was observed, with greater improvements achieved when more auxiliary qubits were available. These findings underscore the importance of automatic resource management, such as auxiliary qubit allocation, in optimizing quantum applications and improving their suitability for near-term quantum hardware.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube