Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Explainable XGBoost-based Approach on Assessing Detection of Deception and Disinformation (2405.18596v1)

Published 28 May 2024 in cs.CR

Abstract: Threat actors continue to exploit geopolitical and global public events launch aggressive campaigns propagating disinformation over the Internet. In this paper we extend our prior research in detecting disinformation using psycholinguistic and computational linguistic processes linked to deception and cybercrime to gain an understanding of the features impact the predictive outcome of machine learning models. In this paper we attempt to determine patterns of deception in disinformation in hybrid models trained on disinformation and scams, fake positive and negative online reviews, or fraud using the eXtreme Gradient Boosting machine learning algorithm. Four hybrid models are generated which are models trained on disinformation and fraud (DIS+EN), disinformation and scams (DIS+FB), disinformation and favorable fake reviews (DIS+POS) and disinformation and unfavorable fake reviews (DIS+NEG). The four hybrid models detected deception and disinformation with predictive accuracies ranging from 75% to 85%. The outcome of the models was evaluated with SHAP to determine the impact of the features.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: