Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or Something Else? (2111.05139v1)

Published 9 Nov 2021 in cs.CL, cs.CY, and cs.LG

Abstract: Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms. Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications. By leveraging an already-available analyst as a human-in-the-loop, however, the canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system. This paper aims to determine which of these techniques is best suited for this purpose and how each technique might best be used towards this end. Training datasets of the same size and nearly identical neural architectures (a BERT transformer as a word embedder with a single feed-forward layer thereafter) are used for each approach, which are then tested on sentiment- and stance-specific datasets to establish a baseline of how well each method can be used to do the other tasks. Four different datasets relating to COVID-19 disinformation are used to test the ability of each technique to detect disinformation on a topic that did not appear in the training data set. Quantitative and qualitative results from these tests are then used to provide insight into how best to employ these techniques in practice.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (1)