Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Lightweight Geometric Deep Learning for Molecular Modelling in Catalyst Discovery (2404.10003v1)

Published 5 Apr 2024 in physics.chem-ph and cs.LG

Abstract: New technology for energy storage is necessary for the large-scale adoption of renewable energy sources like wind and solar. The ability to discover suitable catalysts is crucial for making energy storage more cost-effective and scalable. The Open Catalyst Project aims to apply advances in graph neural networks (GNNs) to accelerate progress in catalyst discovery, replacing Density Functional Theory-based (DFT) approaches that are computationally burdensome. Current approaches involve scaling GNNs to over 1 billion parameters, pushing the problem out of reach for a vast majority of machine learning practitioner around the world. This study aims to evaluate the performance and insights gained from using more lightweight approaches for this task that are more approachable for smaller teams to encourage participation from individuals from diverse backgrounds. By implementing robust design patterns like geometric and symmetric message passing, we were able to train a GNN model that reached a MAE of 0.0748 in predicting the per-atom forces of adsorbate-surface interactions, rivaling established model architectures like SchNet and DimeNet++ while using only a fraction of trainable parameters.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: