Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multimodal Language and Graph Learning of Adsorption Configuration in Catalysis (2401.07408v4)

Published 15 Jan 2024 in cs.CE

Abstract: Adsorption energy is a reactivity descriptor that must be accurately predicted for effective ML application in catalyst screening. This process involves determining the lowest energy across various adsorption configurations on a catalytic surface, which can exhibit very similar energy values. While graph neural networks (GNNs) have shown great success in computing the energy of catalyst systems, they rely heavily on atomic spatial coordinates. In contrast, transformer-based LLMs can directly use human-readable text inputs, potentially bypassing the need for detailed atomic positions. However, these LLMs often struggle with accurately predicting the energy of adsorption configurations. Our study addresses this limitation by introducing a self-supervised multi-modal learning approach called graph-assisted pretraining, which connects well-established GNNs with emerging LLM applications. This method reduces the MAE of energy prediction for adsorption configurations by about 10%. Furthermore, our findings demonstrate that graph-assisted pretraining enhances fine-tuning with different datasets, indicating the transferability of this approach. This method also redirects the model's attention toward adsorption configuration, rather than individual adsorbate and catalyst information, similar to common domain knowledge. Building on this, we propose using generative LLMs to create text inputs for the predictive model, based solely on chemical composition and surface orientation, without relying on exact atomic positions. This demonstrates a potential use case of LLMs in energy prediction without geometric information.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Zitnick, C. L. et al. An Introduction to Electrocatalyst Design using Machine Learning for Renewable Energy Storage. 2020; \urlhttps://arxiv.org/abs/2010.09435
  2. Ju, W.; Fang, Z.; Gu, Y.; Liu, Z.; Long, Q.; Qiao, Z.; Qin, Y.; Shen, J.; Sun, F.; Xiao, Z.; Yang, J.; Yuan, J.; Zhao, Y.; Luo, X.; Zhang, M. A Comprehensive Survey on Deep Graph Representation Learning. 2023; \urlhttps://arxiv.org/abs/2304.05055
  3. Scafarto, G.; Ciortan, M.; Tihon, S.; Ferre, Q. Augment to Interpret: Unsupervised and Inherently Interpretable Graph Embeddings. 2023; \urlhttps://arxiv.org/abs/2309.16564
  4. Chithrananda, S.; Grand, G.; Ramsundar, B. ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction. 2020; \urlhttps://arxiv.org/abs/2010.09885
  5. Kim, S.; Mollaei, P.; Antony, A.; Magar, R.; Farimani, A. B. GPCR-BERT: Interpreting Sequential Design of G Protein Coupled Receptors Using Protein Language Models. 2023; \urlhttps://arxiv.org/abs/2310.19915
  6. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019; \urlhttps://arxiv.org/abs/1907.11692
  7. Liao, Y.-L.; Smidt, T. Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs. 2023; \urlhttps://arxiv.org/abs/2206.11990
  8. Liao, Y.-L.; Wood, B.; Das, A.; Smidt, T. EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations. 2023; \urlhttps://arxiv.org/abs/2306.12059
  9. Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; Krueger, G.; Sutskever, I. Learning Transferable Visual Models From Natural Language Supervision. 2021
  10. Koot, R.; Hennerbichler, M.; Lu, H. Evaluating Transformers for Lightweight Action Recognition. 2021; \urlhttps://arxiv.org/abs/2111.09641
  11. Balaban, M. RTX A6000 Deep Learning Benchmarks. \urlhttps://lambdalabs.com/blog/nvidia-rtx-a6000-benchmarks, 2021; Accessed: 2024-01-01
  12. Balaji, S.; Magar, R. GPT-MolBERTa: GPT Molecular Features Language Model for molecular property prediction. 2023; \urlhttps://arxiv.org/abs/2310.03030
  13. Klicpera, J.; Groß, J.; Günnemann, S. Directional Message Passing for Molecular Graphs. 2020; \urlhttps://arxiv.org/abs/2003.03123
  14. Hao, Y.; Dong, L.; Wei, F.; Xu, K. Self-attention attribution: Interpreting information interactions inside transformer. Proceedings of the AAAI Conference on Artificial Intelligence. 2021; pp 12963–12971
  15. Meidani, K.; Shojaee, P.; Reddy, C. K.; Farimani, A. B. SNIP: Bridging Mathematical Symbolic and Numeric Realms with Unified Pre-training. 2023; \urlhttps://arxiv.org/abs/2310.02227
  16. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. 2019; \urlhttps://arxiv.org/abs/1810.04805
  17. van den Oord, A.; Li, Y.; Vinyals, O. Representation Learning with Contrastive Predictive Coding. 2019; \urlhttps://arxiv.org/abs/1807.03748
Citations (6)

Summary

We haven't generated a summary for this paper yet.