Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PhAST: Physics-Aware, Scalable, and Task-specific GNNs for Accelerated Catalyst Design (2211.12020v4)

Published 22 Nov 2022 in cs.LG and physics.comp-ph

Abstract: Mitigating the climate crisis requires a rapid transition towards lower-carbon energy. Catalyst materials play a crucial role in the electrochemical reactions involved in numerous industrial processes key to this transition, such as renewable energy storage and electrofuel synthesis. To reduce the energy spent on such activities, we must quickly discover more efficient catalysts to drive electrochemical reactions. Machine learning (ML) holds the potential to efficiently model materials properties from large amounts of data, accelerating electrocatalyst design. The Open Catalyst Project OC20 dataset was constructed to that end. However, ML models trained on OC20 are still neither scalable nor accurate enough for practical applications. In this paper, we propose task-specific innovations applicable to most architectures, enhancing both computational efficiency and accuracy. This includes improvements in (1) the graph creation step, (2) atom representations, (3) the energy prediction head, and (4) the force prediction head. We describe these contributions, referred to as PhAST, and evaluate them thoroughly on multiple architectures. Overall, PhAST improves energy MAE by 4 to 42$\%$ while dividing compute time by 3 to 8$\times$ depending on the targeted task/model. PhAST also enables CPU training, leading to 40$\times$ speedups in highly parallelized settings. Python package: \url{https://phast.readthedocs.io}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Alexandre Duval (10 papers)
  2. Victor Schmidt (16 papers)
  3. Santiago Miret (36 papers)
  4. Yoshua Bengio (601 papers)
  5. David Rolnick (68 papers)
  6. Alex Hernández-García (9 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.