Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Energy-Dissipation approach to semilinear gradient flows with state-dependent dissipation (2404.03370v1)

Published 4 Apr 2024 in math.AP

Abstract: We investigate the Weighted Energy-Dissipation variational approach to semilinear gradient flows with state-dependent dissipation. A family of parameter-dependent functionals defined over entire trajectories is introduced and proved to admit global minimizers. These global minimizers correspond to solutions of elliptic-in-time regularizations of the limiting causal problem. By passing to the limit in the parameter we prove that such global minimizers converge, up to subsequences, to a solution of the gradient flow.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (8)
  1. H. Brezis. Opérateur maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. (French) North-Holland Mathematics Studies, no. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.
  2. G. Dal Maso. An introduction to Γnormal-Γ\Gammaroman_Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston Inc., Boston, MA, 1993.
  3. E. De Giorgi. Conjectures concerning some evolution problems. Duke Math. J. 81 (1996), 255–268.
  4. L. C. Evans. Partial differential equations. Graduate Studies in Mathematics, volume 19. American Mathematical Society, Providence, 1998.
  5. T. Ilmanen. Elliptic regularization and partial regularity for motion by mean curvature. Memoirs of the American Mathematical Society, number 520. American Mathematical Society, Providence, 1994.
  6. N. Hirano. Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. Amer. Math. Soc. 120 (1994), 185–192.
  7. U. Stefanelli. The De Giorgi conjecture on elliptic regularization. Math. Models Methods Appl. Sci. 21 (2011), 1377–1394.
  8. E. Zeidler. Nonlinear functional analysis and its applications II/B. Springer-Verlag, New York, 1990.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com