Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Inertia-Dissipation-Energy approach to doubly nonlinear wave equations (2401.08856v1)

Published 16 Jan 2024 in math.AP

Abstract: We discuss a variational approach to doubly nonlinear wave equations of the form $\rho u_{tt} + g (u_t) - \Delta u + f (u)=0$. This approach hinges on the minimization of a parameter-dependent family of uniformly convex functionals over entire trajectories, namely the so-called Weighted Inertia-Dissipation-Energy (WIDE) functionals. We prove that the WIDE functionals admit minimizers and that the corresponding Euler-Lagrange system is solvable in the strong sense. Moreover, we check that the parameter-dependent minimizers converge, up to subsequences, to a solution of the target doubly nonlinear wave equation as the parameter goes to $0$. The analysis relies on specific estimates on the WIDE minimizers, on the decomposition of the subdifferential of the WIDE functional, and on the identification of the nonlinearities in the limit. Eventually, we investigate the viscous limit $\rho \to 0$, both at the functional level and on that of the equation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. V. Barbu. Existence theorems for a class of two point boundary problems, J. Differential Equations, 17:236–257, 1975.
  2. A. Braides. ΓΓ\Gammaroman_Γ-convergence for beginners. Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, 2002.
  3. S. Conti, M. Ortiz. Minimum principles for the trajectories of systems governed by rate problems, J. Mech. Phys. Solids, 56:1885–1904, 2008.
  4. E. De Giorgi. Conjectures concerning some evolution problems. Duke Math. J., 81:255–268, 1996.
  5. J. L. Lions. Singular perturbations and some non linear boundary value problems. MRC Technical Summary Report 421, University of Wisconsin, 1963.
  6. J. L. Lions. Équations différentielles opérationelles dans les espaces de Hilbert. Centro Internazionale Matematico Estivo: Equazioni differenziali astratte, n. 2, Rome, Cremonese, 1963.
  7. J. L. Lions. Sur certaines équations paraboliques non linéaires (French). Bull. Soc. Math. France, 93:155–175, 1965.
  8. J. L. Lions, E. Magenes. Non-homogeneus boundary value problems and applications, volume 1. Springer-Verlag, New York-Heidelberg, 1972.
  9. A. Mielke, U. Stefanelli. Weighted energy-dissipation functionals for gradient flows. ESAIM Control Optim. Calc. Var., 17(1):52–85, 2011.
  10. E. Serra, P. Tilli. A minimization approach to hyperbolic Cauchy problems. J. Eur. Math. Soc. (JEMS), 18(9):2019–2044, 2016.
  11. J. Simon. Compact sets in the space Lp⁢(0,T;B)superscript𝐿𝑝0𝑇𝐵L^{p}(0,T;B)italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( 0 , italic_T ; italic_B ). Annali di Matematica Pura ed Applicata, 146:65–96, 1986.
Citations (2)

Summary

We haven't generated a summary for this paper yet.