Papers
Topics
Authors
Recent
Search
2000 character limit reached

Probabilistic Generation of Finite Almost Simple Groups

Published 26 Mar 2024 in math.GR and math.CO | (2403.17291v1)

Abstract: We prove that if G is a sufficiently large finite almost simple group of Lie type, then given a fixed nontrivial element x in G and a coset of G modulo its socle, the probability that x and a random element of the coset generate a subgroup containing the socle is uniformly bounded away from 0 (and goes to 1 if the field size goes to infinity). This is new even if G is simple. Together with results of Lucchini and Burness--Guralnick--Harper, this proves a conjecture of Lucchini and has an application to profinite groups. A key step in the proof is the determination of the limits for the proportion of elements in a classical group which fix no subspace of any bounded dimension.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.