Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the generation of simple groups by Sylow subgroups

Published 8 Apr 2022 in math.GR | (2204.04311v2)

Abstract: Let $G$ be a finite simple group of Lie type and let $P$ be a Sylow $2$-subgroup of $G$. In this paper, we prove that for any nontrivial element $x \in G$, there exists $g \in G$ such that $G = \langle P, xg \rangle$. By combining this result with recent work of Breuer and Guralnick, we deduce that if $G$ is a finite nonabelian simple group and $r$ is any prime divisor of $|G|$, then $G$ is generated by a Sylow $2$-subgroup and a Sylow $r$-subgroup.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.