Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring the Influence of Dimensionality Reduction on Anomaly Detection Performance in Multivariate Time Series (2403.04429v1)

Published 7 Mar 2024 in cs.LG

Abstract: This paper presents an extensive empirical study on the integration of dimensionality reduction techniques with advanced unsupervised time series anomaly detection models, focusing on the MUTANT and Anomaly-Transformer models. The study involves a comprehensive evaluation across three different datasets: MSL, SMAP, and SWaT. Each dataset poses unique challenges, allowing for a robust assessment of the models' capabilities in varied contexts. The dimensionality reduction techniques examined include PCA, UMAP, Random Projection, and t-SNE, each offering distinct advantages in simplifying high-dimensional data. Our findings reveal that dimensionality reduction not only aids in reducing computational complexity but also significantly enhances anomaly detection performance in certain scenarios. Moreover, a remarkable reduction in training times was observed, with reductions by approximately 300\% and 650\% when dimensionality was halved and minimized to the lowest dimensions, respectively. This efficiency gain underscores the dual benefit of dimensionality reduction in both performance enhancement and operational efficiency. The MUTANT model exhibits notable adaptability, especially with UMAP reduction, while the Anomaly-Transformer demonstrates versatility across various reduction techniques. These insights provide a deeper understanding of the synergistic effects of dimensionality reduction and anomaly detection, contributing valuable perspectives to the field of time series analysis. The study underscores the importance of selecting appropriate dimensionality reduction strategies based on specific model requirements and dataset characteristics, paving the way for more efficient, accurate, and scalable solutions in anomaly detection.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. Chauhan, S., Vig, L.: Anomaly detection in ecg time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7 (2015). IEEE Heaton et al. [2017] Heaton, J.B., Polson, N.G., Witte, J.H.: Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry 33(1), 3–12 (2017) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Shi et al. [2023] Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Heaton, J.B., Polson, N.G., Witte, J.H.: Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry 33(1), 3–12 (2017) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Shi et al. [2023] Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Shi et al. [2023] Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  2. Heaton, J.B., Polson, N.G., Witte, J.H.: Deep learning for finance: deep portfolios. Applied Stochastic Models in Business and Industry 33(1), 3–12 (2017) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Shi et al. [2023] Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Shi et al. [2023] Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  3. Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Shi et al. [2023] Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  4. Shi, Y., Wang, B., Yu, Y., Tang, X., Huang, C., Dong, J.: Robust anomaly detection for multivariate time series through temporal gcns and attention-based vae. Knowledge-Based Systems, 110725 (2023) Schölkopf et al. [2001] Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  5. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001) Liu et al. [2008] Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  6. Liu, F.T., Ting, K.M., Zhou, Z.-H.: Isolation forest. In: 2008 Eighth Ieee International Conference on Data Mining, pp. 413–422 (2008). IEEE Breunig et al. [2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  7. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Ruff et al. [2018] Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  8. Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018). PMLR Zong et al. [2018] Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  9. Zong, B., Song, Q., Min, M.R., Cheng, W., Lumezanu, C., Cho, D., Chen, H.: Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In: International Conference on Learning Representations (2018) Park et al. [2018] Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  10. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters 3(3), 1544–1551 (2018) Zhou et al. [2019] Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  11. Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: Beatgan: Anomalous rhythm detection using adversarially generated time series. In: IJCAI, vol. 2019, pp. 4433–4439 (2019) Vaidya and Vaidya [2022] Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  12. Vaidya, V., Vaidya, J.: Impact of dimensionality reduction on outlier detection: an empirical study. In: 2022 IEEE 4th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), pp. 150–159 (2022). IEEE Li et al. [2021] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  13. Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., Pei, D.: Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 3220–3230 (2021) Shen et al. [2020] Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  14. Shen, L., Li, Z., Kwok, J.: Timeseries anomaly detection using temporal hierarchical one-class network. Advances in Neural Information Processing Systems 33, 13016–13026 (2020) Xu et al. [2021] Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  15. Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: Time series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642 (2021) Meng et al. [2023] Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  16. Meng, G., Wang, B., Wu, Y., Zhou, M., Meng, T.: A hybrid dimensionality reduction method for outlier detection in high-dimensional data. International Journal of Machine Learning and Cybernetics, 1–14 (2023) Wold et al. [1987] Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  17. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. chimometrics and intelligent laboratory systems. In: IEEE Conference on Emerging Technologies & Factory Automation Efta, pp. 704–706 (1987) Sainburg et al. [2021] Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  18. Sainburg, T., McInnes, L., Gentner, T.Q.: Parametric umap embeddings for representation and semisupervised learning. Neural Computation 33(11), 2881–2907 (2021) Achlioptas [2003] Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  19. Achlioptas, D.: Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences 66(4), 671–687 (2003) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  20. Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) Hundman et al. [2018] Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  21. Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 387–395 (2018) Goh et al. [2017] Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  22. Goh, J., Adepu, S., Junejo, K.N., Mathur, A.: A dataset to support research in the design of secure water treatment systems. In: Critical Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris, France, October 10–12, 2016, Revised Selected Papers 11, pp. 88–99 (2017). Springer Mathur and Tippenhauer [2016] Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE
  23. Mathur, A.P., Tippenhauer, N.O.: Swat: A water treatment testbed for research and training on ics security. In: 2016 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater), pp. 31–36 (2016). IEEE

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets