Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Flexible Framework for Anomaly Detection via Dimensionality Reduction (1909.04060v1)

Published 9 Sep 2019 in cs.LG, astro-ph.IM, cs.AI, stat.CO, and stat.ML

Abstract: Anomaly detection is challenging, especially for large datasets in high dimensions. Here we explore a general anomaly detection framework based on dimensionality reduction and unsupervised clustering. We release DRAMA, a general python package that implements the general framework with a wide range of built-in options. We test DRAMA on a wide variety of simulated and real datasets, in up to 3000 dimensions, and find it robust and highly competitive with commonly-used anomaly detection algorithms, especially in high dimensions. The flexibility of the DRAMA framework allows for significant optimization once some examples of anomalies are available, making it ideal for online anomaly detection, active learning and highly unbalanced datasets.

Citations (14)

Summary

We haven't generated a summary for this paper yet.