Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of Dimensions Contributing to Detected Anomalies with Variational Autoencoders (1811.04576v2)

Published 12 Nov 2018 in stat.ML and cs.LG

Abstract: Anomaly detection using dimensionality reduction has been an essential technique for monitoring multidimensional data. Although deep learning-based methods have been well studied for their remarkable detection performance, their interpretability is still a problem. In this paper, we propose a novel algorithm for estimating the dimensions contributing to the detected anomalies by using variational autoencoders (VAEs). Our algorithm is based on an approximative probabilistic model that considers the existence of anomalies in the data, and by maximizing the log-likelihood, we estimate which dimensions contribute to determining data as an anomaly. The experiments results with benchmark datasets show that our algorithm extracts the contributing dimensions more accurately than baseline methods.

Citations (13)

Summary

We haven't generated a summary for this paper yet.