Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The algebraic matroid of the Heron variety (2401.06286v2)

Published 11 Jan 2024 in math.AG and math.CO

Abstract: We introduce the n-th Heron variety as the realization space of the (squared) volumes of faces of an n-simplex. Our primary goal is to understand the extent to which Heron's formula, which expresses the area of a triangle as a function of its three edge lengths, can be generalized. Such a formula for one face volume of an n-simplex in terms of other face volumes expresses a dependence in the algebraic matroid of the Heron variety. Whether the volume is expressible in terms of radicals is controlled by the monodromy groups of the coordinate projections of the Heron variety onto coordinates of bases. We discuss a suite of algorithms, some new, for determining these matroids and monodromy groups. We apply these algorithms toward the smaller Heron varieties, organize our findings, and interpret the results in the context of our original motivation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. A. Al Ahmadieh and C. Vinzant. Characterizing principal minors of symmetric matrices via determinantal multiaffine polynomials. Journal of Algebra, 638:255–278, 2024.
  2. S. Asante and T. Brysiewicz. Solving the area-length system in discrete gravity using homotopy continuation. In progress, 2024.
  3. A. Ashtekar. New Variables for Classical and Quantum Gravity. Phys. Rev. Lett., 57:2244–2247, 1986.
  4. D. I. Bernstein. Generic symmetry-forced infinitesimal rigidity: Translations and rotations. SIAM Journal on Applied Algebra and Geometry, 6(2):190–215, 2022.
  5. D. N. Bernstein. The number of roots of a system of equations. Functional Analysis and its Applications, 9:183–185, 1975.
  6. Julia: a fresh approach to numerical computing. SIAM Rev., 59(1):65–98, 2017.
  7. Distribution of points in n-space. The American Mathematical Monthly, 50(3):181–185, 1943.
  8. C. Borcea. Point configurations and cayley-menger varieties. preprint arXiv:math/0207110, 2022.
  9. C. Borcea and I. Streinu. On the number of embeddings of minimally rigid graphs. In Proceedings of the Eighteenth Annual Symposium on Computational Geometry, SCG ’02, page 25–32, New York, NY, USA, 2002. Association for Computing Machinery.
  10. Metric Algebraic Geometry. Oberwolfach Seminars. Birkhäuser Cham, 2024.
  11. Certifying zeros of polynomial systems using interval arithmetic. ACM Trans. Math. Softw., 49(1), mar 2023.
  12. P. Breiding and S. Timme. HomotopyContinuation.jl: A package for homotopy continuation in Julia. In Mathematical Software–ICMS 2018: 6th International Conference, South Bend, IN, USA, July 24-27, 2018, Proceedings 6, page 458–465. Springer, 2018.
  13. J. L. Britton. Helmut wielandt, finite permutation groups (translated from the german by r. bercov) (academic press, new york and london, 1964). Proceedings of the Edinburgh Mathematical Society, 15:246 – 246, 1967.
  14. Relations between the minors of a generic matrix. Advances in Mathematics, 244:171 – 206, 2013. Cited by: 22; All Open Access, Green Open Access.
  15. Solving decomposable sparse systems. Numerical Algorithms, 88:453–474, 2021.
  16. T. Bryslawski and D. Kelly. Matroids and combinatorial geometries. Carolina Lecture Series, 1980.
  17. J. E. Graver. Rigidity matroids. SIAM Journal on Discrete Mathematics, 4(3):355–368, 1991.
  18. J. Harris. Galois groups of enumerative problems. Duke Mathematical Journal, 46(4):685–724, 1979.
  19. Certified predictor–corrector tracking for newton homotopies. Journal of Symbolic Computation, 74:239–254, 2016.
  20. Numerical computation of galois groups. Foundations of Computational Mathematics, 18(4):867–890, Aug 2018.
  21. A congruence modulo four in real schubert calculus. Journal für die reine und angewandte Mathematik (Crelles Journal), 2016(714):151–174, 2016.
  22. A congruence modulo four for real schubert calculus with isotropic flags. Canadian Mathematical Bulletin, 60(2):309–318, 2017.
  23. A. G. Kushnirenko. Newton polyhedra and Bézout’s theorem. Akademija Nauk SSSR. Funkcionalc’nyĭ Analiz i ego Priloenija, 10(3):82–83, 1976.
  24. T. Li and X. Wang. The bkk root count in cnsuperscript𝑐𝑛c^{n}italic_c start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Math. Comput., 65(216):1477–1484, 1996.
  25. L. Liberti and C. Lavor. Six mathematical gems from the history of distance geometry. International Transactions in Operational Research, 23(5):897–920, 2016.
  26. S. Lin and B. Sturmfels. Polynomial relations among principal minors of a 4×4-matrix. Journal of Algebra, 322(11):4121–4131, 2009. Computational Algebra.
  27. On the asymptotic proportion of connected matroids. European J. Combin., 32:882–890, 2011.
  28. P. Nelson. Almost all matroids are non-representable. preprint arXiv:1605.04288, 2016.
  29. L. Oeding. Set-theoretic defining equations of the variety of principal minors of symmetric matrices. Algebra & Number Theory, 5(1):75 – 109, 2011.
  30. H. of Alexandria. Metrica. 1, 100.
  31. Oscar. -open source computer algebra research system, version 0.12.2-dev, 2023.
  32. J. G. Oxley. Matroid theory, volume 3. Oxford University Press, USA, 2006.
  33. A. Perez. The Spin Foam Approach to Quantum Gravity. Living Rev. Rel., 16:3, 2013.
  34. G. P. Pirola and E. Schlesinger. Monodromy of projective curves. Journal of Algebraic Geometry, 14, 12 2003.
  35. Z. Rosen. Computing algebraic matroids. preprint arXiv:math/1403.8148, 2014.
  36. I. J. Schoenberg. Remarks to maurice frechet’s article “sur la definition axiomatique d’une classe d’espace distances vectoriellement applicable sur l’espace de hilbert. Annals of Mathematics, 36(3):724–732, 1935.
  37. The GAP Group. Gap – groups, algorithms, and programming, version 4.12.2, 2022.
  38. The Pando(RA) Group. Pando(ra), version 0.1.0, 2023.
  39. W. Whiteley. Matroids and Rigid Structures, page 1–53. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1992.
  40. Y. Zhang. Galois groups of enumerative problems. Thesis, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: