Computing Algebraic Matroids (1403.8148v2)
Abstract: An affine variety induces the structure of an algebraic matroid on the set of coordinates of the ambient space. The matroid has two natural decorations: a circuit polynomial attached to each circuit, and the degree of the projection map to each base, called the base degree. Decorated algebraic matroids can be computed via symbolic computation using Groebner bases, or through linear algebra in the space of differentials (with decorations calculated using numerical algebraic geometry). Both algorithms are developed here. Failure of the second algorithm occurs on a subvariety called the non-matroidal or NM- locus. Decorated algebraic matroids have widespread relevance anywhere that coordinates have combinatorial significance. Examples are computed from applied algebra, in algebraic statistics and chemical reaction network theory, as well as more theoretical examples from algebraic geometry and matroid theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.