Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The volume polynomial of regular semisimple Hessenberg varieties and the Gelfand-Zetlin polytope (1812.10112v1)

Published 25 Dec 2018 in math.AG, math.CO, math.RT, and math.SG

Abstract: Regular semisimple Hessenberg varieties are subvarieties of the flag variety $\mathrm{Flag}(\mathbb{C}n)$ arising naturally in the intersection of geometry, representation theory, and combinatorics. Recent results of Abe-Horiguchi-Masuda-Murai-Sato and Abe-DeDieu-Galetto-Harada relate the volume polynomials of regular semisimple Hessenberg varieties to the volume polynomial of the Gelfand-Zetlin polytope $\mathrm{GZ}(\lambda)$ for $\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_n)$. The main results of this manuscript use and generalize tools developed by Anderson-Tymoczko, Kiritchenko-Smirnov-Timorin, and Postnikov, in order to derive an explicit formula for the volume polynomials of regular semisimple Hessenberg varieties in terms of the volumes of certain faces of the Gelfand-Zetlin polytope, and also exhibit a manifestly positive, combinatorial formula for their coefficients with respect to the basis of monomials in the $\alpha_i := \lambda_i-\lambda_{i+1}$. In addition, motivated by these considerations, we carefully analyze the special case of the permutohedral variety, which is also known as the toric variety associated to Weyl chambers. In this case, we obtain an explicit decomposition of the permutohedron (the moment map image of the permutohedral variety) into combinatorial $(n-1)$-cubes, and also give a geometric interpretation of this decomposition by expressing the cohomology class of the permutohedral variety in $\mathrm{Flag}(\mathbb{C}n)$ as a sum of the cohomology classes of a certain set of Richardson varieties.

Summary

We haven't generated a summary for this paper yet.