Papers
Topics
Authors
Recent
2000 character limit reached

Rabinowitz Floer homology for prequantization bundles and Floer Gysin sequence (2311.17866v2)

Published 29 Nov 2023 in math.SG

Abstract: Let $Y$ be a prequantization bundle over a closed spherically monotone symplectic manifold $\Sigma$. Adapting an idea due to Diogo and Lisi, we study a split version of Rabinowitz Floer homology for $Y$ in the following two settings. First, $\Sigma$ is a symplectic hyperplane section of a closed symplectic manifold $X$ satisfying a certain monotonicity condition; in this case, $X \setminus \Sigma$ is a Liouville filling of $Y$. Second, the minimal Chern number of $\Sigma$ is greater than one, which is the case where the Rabinowitz Floer homology of the symplectization $\mathbb{R} \times Y$ is defined. In both cases, we construct a Gysin-type exact sequence connecting the Rabinowitz Floer homology of $X\setminus\Sigma$ or $\mathbb{R} \times Y$ and the quantum homology of $\Sigma$. As applications, we discuss the invertibility of a symplectic hyperplane section class in quantum homology, the isotopy problem for fibered Dehn twists, the orderability problem for prequantization bundles, and the existence of translated points. We also provide computational results based on the exact sequence that we construct.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.