Papers
Topics
Authors
Recent
2000 character limit reached

Lectures on Twisted Rabinowitz-Floer Homology

Published 12 Sep 2021 in math.SG | (2109.06649v2)

Abstract: Rabinowitz-Floer homology is the Morse-Bott homology in the sense of Floer associated with the Rabinowitz action functional introduced by Kai Cieliebak and Urs Frauenfelder in 2009. In this manuscript, we consider a generalisation of this theory to a Rabinowitz-Floer homology of a Liouville automorphism. As an application, we show the existence of noncontractible periodic Reeb orbits on quotients of symmetric star-shaped hypersurfaces. In particular, this theory applies to lens spaces. Moreover, we prove a forcing theorem, which guarantees the existence of a contractible twisted closed characteristic on a displaceable twisted stable hypersurface in a symplectically aspherical geometrically bounded symplectic manifold if there exists a contractible twisted closed characteristic belonging to a Morse-Bott component, with energy difference smaller or equal to the displacement energy of the displaceable hypersurface.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.