Lectures on Twisted Rabinowitz-Floer Homology
Abstract: Rabinowitz-Floer homology is the Morse-Bott homology in the sense of Floer associated with the Rabinowitz action functional introduced by Kai Cieliebak and Urs Frauenfelder in 2009. In this manuscript, we consider a generalisation of this theory to a Rabinowitz-Floer homology of a Liouville automorphism. As an application, we show the existence of noncontractible periodic Reeb orbits on quotients of symmetric star-shaped hypersurfaces. In particular, this theory applies to lens spaces. Moreover, we prove a forcing theorem, which guarantees the existence of a contractible twisted closed characteristic on a displaceable twisted stable hypersurface in a symplectically aspherical geometrically bounded symplectic manifold if there exists a contractible twisted closed characteristic belonging to a Morse-Bott component, with energy difference smaller or equal to the displacement energy of the displaceable hypersurface.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.