Papers
Topics
Authors
Recent
2000 character limit reached

Vanishing of Rabinowitz Floer homology on negative line bundles (1508.02525v1)

Published 11 Aug 2015 in math.SG

Abstract: Following [Fra08, AF14] we construct Rabinowitz Floer homology for negative line bundles over symplectic manifolds and prove a vanishing result. In [Rit14] Ritter showed that symplectic homology of these spaces does not vanish, in general. Thus, the theorem $\mathrm{SH}=0\Leftrightarrow\mathrm{RFH}=0$, [Rit13], does not extend beyond the symplectically aspherical situation. We give a conjectural explanation in terms of the Cieliebak-Frauenfelder-Oancea long exact sequence [CFO10].

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.