Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-tune Language Models to Approximate Unbiased In-context Learning (2310.03331v1)

Published 5 Oct 2023 in cs.LG

Abstract: In-context learning (ICL) is an astonishing emergent ability of LLMs. By presenting a prompt that includes multiple input-output pairs as examples and introducing a new query input, models can generate the corresponding output. However, the performance of models heavily relies on the quality of the input prompt when implementing in-context learning. Biased or imbalanced input prompts can significantly degrade the performance of LLMs. To address this issue, we introduce a reweighted algorithm called RICL (Reweighted In-context Learning). This algorithm fine-tunes LLMs using an unbiased validation set to determine the optimal weight for each input-output example to approximate unbiased in-context learning. Furthermore, we also introduce a low-cost reweighted algorithm, a linear optimal weight approximation algorithm called LARICL (Linear Approximation of Reweighted In-context Learning). This algorithm requires minimal training cost while providing effective results. We prove the convergence of our algorithm and validate its performance through experiments conducted on a numerical dataset. The experimental findings reveal a substantial improvement in comparison to benchmarks including the performance of casual prompt-based in-context learning and the performance of a classic fine-tuning method.

Citations (13)

Summary

We haven't generated a summary for this paper yet.