Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Gaussian and Bootstrap Approximations for Suprema of Empirical Processes (2309.01307v1)

Published 4 Sep 2023 in math.ST, math.PR, stat.ME, and stat.TH

Abstract: In this paper we develop non-asymptotic Gaussian approximation results for the sampling distribution of suprema of empirical processes when the indexing function class $\mathcal{F}_n$ varies with the sample size $n$ and may not be Donsker. Prior approximations of this type required upper bounds on the metric entropy of $\mathcal{F}_n$ and uniform lower bounds on the variance of $f \in \mathcal{F}_n$ which, both, limited their applicability to high-dimensional inference problems. In contrast, the results in this paper hold under simpler conditions on boundedness, continuity, and the strong variance of the approximating Gaussian process. The results are broadly applicable and yield a novel procedure for bootstrapping the distribution of empirical process suprema based on the truncated Karhunen-Lo{`e}ve decomposition of the approximating Gaussian process. We demonstrate the flexibility of this new bootstrap procedure by applying it to three fundamental problems in high-dimensional statistics: simultaneous inference on parameter vectors, inference on the spectral norm of covariance matrices, and construction of simultaneous confidence bands for functions in reproducing kernel Hilbert spaces.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.