Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Gaussian and bootstrap approximations for high-dimensional U-statistics and their applications (1610.00032v3)

Published 30 Sep 2016 in math.ST and stat.TH

Abstract: This paper studies the Gaussian and bootstrap approximations for the probabilities of a non-degenerate U-statistic belonging to the hyperrectangles in $\mathbb{R}d$ when the dimension $d$ is large. A two-step Gaussian approximation procedure that does not impose structural assumptions on the data distribution is proposed. Subject to mild moment conditions on the kernel, we establish the explicit rate of convergence uniformly in the class of all hyperrectangles in $\mathbb{R}d$ that decays polynomially in sample size for a high-dimensional scaling limit, where the dimension can be much larger than the sample size. We also provide computable approximation methods for the quantiles of the maxima of centered U-statistics. Specifically, we provide a unified perspective for the empirical bootstrap, the randomly reweighted bootstrap, and the Gaussian multiplier bootstrap with the jackknife estimator of covariance matrix as randomly reweighted quadratic forms and we establish their validity. We show that all three methods are inferentially first-order equivalent for high-dimensional U-statistics in the sense that they achieve the same uniform rate of convergence over all $d$-dimensional hyperrectangles. In particular, they are asymptotically valid when the dimension $d$ can be as large as $O(e{nc})$ for some constant $c \in (0,1/7)$. (Full abstract can be found in the paper.)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube