Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Gaussian Comparison Inequality and Its Application to Spectral Analysis of Large Random Matrices

Published 7 Jul 2016 in math.ST, stat.ME, and stat.TH | (1607.01853v3)

Abstract: Recently, Chernozhukov, Chetverikov, and Kato [Ann. Statist. 42 (2014) 1564--1597] developed a new Gaussian comparison inequality for approximating the suprema of empirical processes. This paper exploits this technique to devise sharp inference on spectra of large random matrices. In particular, we show that two long-standing problems in random matrix theory can be solved: (i) simple bootstrap inference on sample eigenvalues when true eigenvalues are tied; (ii) conducting two-sample Roy's covariance test in high dimensions. To establish the asymptotic results, a generalized $\epsilon$-net argument regarding the matrix rescaled spectral norm and several new empirical process bounds are developed and of independent interest.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.