Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STEPS: A Benchmark for Order Reasoning in Sequential Tasks (2306.04441v1)

Published 7 Jun 2023 in cs.CL

Abstract: Various human activities can be abstracted into a sequence of actions in natural text, i.e. cooking, repairing, manufacturing, etc. Such action sequences heavily depend on the executing order, while disorder in action sequences leads to failure of further task execution by robots or AI agents. Therefore, to verify the order reasoning capability of current neural models in sequential tasks, we propose a challenging benchmark , named STEPS. STEPS involves two subtask settings, focusing on determining the rationality of given next step in recipes and selecting the reasonable step from the multi-choice question, respectively. We describe the data construction and task formulations, and benchmark most of significant LLMs. The experimental results demonstrate 1) The commonsense reasoning of action orders in sequential tasks are challenging to resolve via zero-shot prompting or few-shot in-context learning for LLMs; 2) Prompting method still significantly lags behind tuning-based method on STEPS.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Weizhi Wang (18 papers)
  2. Hong Wang (254 papers)
  3. Xifeng Yan (52 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.