Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Distributed Rate Scaling in Large-Scale Service Systems (2306.02215v1)

Published 3 Jun 2023 in math.OC and math.PR

Abstract: We consider a large-scale parallel-server system, where each server independently adjusts its processing speed in a decentralized manner. The objective is to minimize the overall cost, which comprises the average cost of maintaining the servers' processing speeds and a non-decreasing function of the tasks' sojourn times. The problem is compounded by the lack of knowledge of the task arrival rate and the absence of a centralized control or communication among the servers. We draw on ideas from stochastic approximation and present a novel rate scaling algorithm that ensures convergence of all server processing speeds to the globally asymptotically optimum value as the system size increases. Apart from the algorithm design, a key contribution of our approach lies in demonstrating how concepts from the stochastic approximation literature can be leveraged to effectively tackle learning problems in large-scale, distributed systems. En route, we also analyze the performance of a fully heterogeneous parallel-server system, where each server has a distinct processing speed, which might be of independent interest.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.