Distributed Rate Scaling in Large-Scale Service Systems (2306.02215v1)
Abstract: We consider a large-scale parallel-server system, where each server independently adjusts its processing speed in a decentralized manner. The objective is to minimize the overall cost, which comprises the average cost of maintaining the servers' processing speeds and a non-decreasing function of the tasks' sojourn times. The problem is compounded by the lack of knowledge of the task arrival rate and the absence of a centralized control or communication among the servers. We draw on ideas from stochastic approximation and present a novel rate scaling algorithm that ensures convergence of all server processing speeds to the globally asymptotically optimum value as the system size increases. Apart from the algorithm design, a key contribution of our approach lies in demonstrating how concepts from the stochastic approximation literature can be leveraged to effectively tackle learning problems in large-scale, distributed systems. En route, we also analyze the performance of a fully heterogeneous parallel-server system, where each server has a distinct processing speed, which might be of independent interest.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.