Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting municipalities in financial distress: a machine learning approach enhanced by domain expertise (2302.05780v2)

Published 11 Feb 2023 in cs.LG

Abstract: Financial distress of municipalities, although comparable to bankruptcy of private companies, has a far more serious impact on the well-being of communities. For this reason, it is essential to detect deficits as soon as possible. Predicting financial distress in municipalities can be a complex task, as it involves understanding a wide range of factors that can affect a municipality's financial health. In this paper, we evaluate machine learning models to predict financial distress in Italian municipalities. Accounting judiciary experts have specialized knowledge and experience in evaluating the financial performance, and they use a range of indicators to make their assessments. By incorporating these indicators in the feature extraction process, we can ensure that the model is taking into account a wide range of information that is relevant to the financial health of municipalities. The results of this study indicate that using machine learning models in combination with the knowledge of accounting judiciary experts can aid in the early detection of financial distress, leading to better outcomes for the communities.

Citations (2)

Summary

We haven't generated a summary for this paper yet.