Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Financial Distress Prediction For Small And Medium Enterprises Using Machine Learning Techniques (2302.12118v1)

Published 23 Feb 2023 in cs.LG and q-fin.ST

Abstract: Financial Distress Prediction plays a crucial role in the economy by accurately forecasting the number and probability of failing structures, providing insight into the growth and stability of a country's economy. However, predicting financial distress for Small and Medium Enterprises is challenging due to their inherent ambiguity, leading to increased funding costs and decreased chances of receiving funds. While several strategies have been developed for effective FCP, their implementation, accuracy, and data security fall short of practical applications. Additionally, many of these strategies perform well for a portion of the dataset but are not adaptable to various datasets. As a result, there is a need to develop a productive prediction model for better order execution and adaptability to different datasets. In this review, we propose a feature selection algorithm for FCP based on element credits and data source collection. Current financial distress prediction models rely mainly on financial statements and disregard the timeliness of organization tests. Therefore, we propose a corporate FCP model that better aligns with industry practice and incorporates the gathering of thin-head component analysis of financial data, corporate governance qualities, and market exchange data with a Relevant Vector Machine. Experimental results demonstrate that this strategy can improve the forecast efficiency of financial distress with fewer characteristic factors.

Summary

We haven't generated a summary for this paper yet.