Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

On the Universal Approximation Property of Deep Fully Convolutional Neural Networks (2211.14047v2)

Published 25 Nov 2022 in cs.LG and cs.CV

Abstract: We study the approximation of shift-invariant or equivariant functions by deep fully convolutional networks from the dynamical systems perspective. We prove that deep residual fully convolutional networks and their continuous-layer counterpart can achieve universal approximation of these symmetric functions at constant channel width. Moreover, we show that the same can be achieved by non-residual variants with at least 2 channels in each layer and convolutional kernel size of at least 2. In addition, we show that these requirements are necessary, in the sense that networks with fewer channels or smaller kernels fail to be universal approximators.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: