Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Properties of Deep ReLU CNNs (2109.00190v2)

Published 1 Sep 2021 in cs.LG and stat.ML

Abstract: This paper focuses on establishing $L2$ approximation properties for deep ReLU convolutional neural networks (CNNs) in two-dimensional space. The analysis is based on a decomposition theorem for convolutional kernels with a large spatial size and multi-channels. Given the decomposition result, the property of the ReLU activation function, and a specific structure for channels, a universal approximation theorem of deep ReLU CNNs with classic structure is obtained by showing its connection with one-hidden-layer ReLU neural networks (NNs). Furthermore, approximation properties are obtained for one version of neural networks with ResNet, pre-act ResNet, and MgNet architecture based on connections between these networks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.