Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning via Dynamical Systems: An Approximation Perspective (1912.10382v2)

Published 22 Dec 2019 in cs.LG, math.OC, and stat.ML

Abstract: We build on the dynamical systems approach to deep learning, where deep residual networks are idealized as continuous-time dynamical systems, from the approximation perspective. In particular, we establish general sufficient conditions for universal approximation using continuous-time deep residual networks, which can also be understood as approximation theories in $Lp$ using flow maps of dynamical systems. In specific cases, rates of approximation in terms of the time horizon are also established. Overall, these results reveal that composition function approximation through flow maps present a new paradigm in approximation theory and contributes to building a useful mathematical framework to investigate deep learning.

Citations (97)

Summary

We haven't generated a summary for this paper yet.