Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Heavy-Tailed Loss Frequencies from Mixtures of Negative Binomial and Poisson Counts (2211.03611v2)

Published 7 Nov 2022 in stat.ME, math.PR, and stat.AP

Abstract: Heavy-tailed random variables have been used in insurance research to model both loss frequencies and loss severities, with substantially more emphasis on the latter. In the present work, we take a step toward addressing this imbalance by exploring the class of heavy-tailed frequency models formed by continuous mixtures of Negative Binomial and Poisson random variables. We begin by defining the concept of a calibrative family of mixing distributions (each member of which is identifiable from its associated Negative Binomial mixture), and show how to construct such families from only a single member. We then introduce a new heavy-tailed frequency model -- the two-parameter ZY distribution -- as a generalization of both the one-parameter Zeta and Yule distributions, and construct calibrative families for both the new distribution and the heavy-tailed two-parameter Waring distribution. Finally, we pursue natural extensions of both the ZY and Waring families to a unifying, four-parameter heavy-tailed model, providing the foundation for a novel loss-frequency modeling approach to complement conventional GLM analyses. This approach is illustrated by application to a classic set of Swedish commercial motor-vehicle insurance loss data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube