Papers
Topics
Authors
Recent
Search
2000 character limit reached

Integrable heat conduction model

Published 24 Oct 2022 in cond-mat.stat-mech, hep-th, math-ph, math.MP, and math.PR | (2210.13627v2)

Abstract: We consider a stochastic process of heat conduction where energy is redistributed along a chain between nearest neighbor sites via an improper beta distribution. Similar to the well-known Kipnis-Marchioro-Presutti (KMP) model, the finite chain is coupled at its ends with two reservoirs that break the conservation of energy when working at different temperatures. At variance with KMP, the model considered here is integrable and one can write in a closed form the $n$-point correlation functions of the non-equilibrium steady state. As a consequence of the exact solution one can directly prove that the system is in a `local equilibrium' and described at the macro-scale by a product measure. Integrability manifests itself through the description of the model via the open Heisenberg chain with non-compact spins. The algebraic formulation of the model allows to interpret its duality relation with a purely absorbing particle system as a change of representation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.