Papers
Topics
Authors
Recent
Search
2000 character limit reached

Full Statistics of Nonstationary Heat Transfer in the Kipnis-Marchioro-Presutti Model

Published 13 Apr 2022 in cond-mat.stat-mech, math-ph, math.MP, math.PR, and nlin.SI | (2204.06278v3)

Abstract: We investigate non-stationary heat transfer in the Kipnis-Marchioro-Presutti (KMP) lattice gas model at long times in one dimension when starting from a localized heat distribution. At large scales this initial condition can be described as a delta-function, $u(x,t=0)=W \delta(x)$. We characterize the process by the heat, transferred to the right of a specified point $x=X$ by time $T$, $$ J=\int_X\infty u(x,t=T)\,dx\,, $$ and study the full probability distribution $\mathcal{P}(J,X,T)$. The particular case of $X=0$ has been recently solved [Bettelheim \textit{et al}. Phys. Rev. Lett. \textbf{128}, 130602 (2022)]. At fixed $J$, the distribution $\mathcal{P}$ as a function of $X$ and $T$ has the same long-time dynamical scaling properties as the position of a tracer in a single-file diffusion. Here we evaluate $\mathcal{P}(J,X,T)$ by exploiting the recently uncovered complete integrability of the equations of the macroscopic fluctuation theory (MFT) for the KMP model and using the Zakharov-Shabat inverse scattering method. We also discuss asymptotics of $\mathcal{P}(J,X,T)$ which we extract from the exact solution, and also obtain by applying two different perturbation methods directly to the MFT equations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.