Papers
Topics
Authors
Recent
Search
2000 character limit reached

Exact solution of an integrable non-equilibrium particle system

Published 4 Jul 2021 in math-ph, cond-mat.stat-mech, hep-th, math.MP, math.PR, and nlin.SI | (2107.01720v3)

Abstract: We consider the integrable family of symmetric boundary-driven interacting particle systems that arise from the non-compact XXX Heisenberg model in one dimension with open boundaries. In contrast to the well-known symmetric exclusion process, the number of particles at each site is unbounded. We show that a finite chain of $N$ sites connected at its ends to two reservoirs can be solved exactly, i.e. the factorial moments of the non-equilibrium steady-state can be written in closed form for each $N$. The solution relies on probabilistic arguments and techniques inspired by integrable systems. It is obtained in two steps: i) the introduction of a dual absorbing process reducing the problem to a finite number of particles; ii) the solution of the dual dynamics exploiting a symmetry obtained from the Quantum Inverse Scattering Method. Long-range correlations are computed in the finite-volume system. The exact solution allows to prove by a direct computation that, in the thermodynamic limit, the system approaches local equilibrium. A by-product of the solution is the algebraic construction of a direct mapping between the non-equilibrium steady state and the equilibrium reversible measure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. Springer Science & Business Media, 2012.
  2. A. De Masi and E. Presutti, Mathematical methods for hydrodynamic limits. Springer, 2006.
  3. B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, “Exact solution of a 1D asymmetric exclusion model using a matrix formulation,” Journal of Physics A: Mathematical and General 26 no. 7, (1993) 1493–1517.
  4. B. Derrida, “Non-equilibrium steady states: fluctuations and large deviations of the density and of the current,” Journal of Statistical Mechanics: Theory and Experiment 2007 no. 07, (2007) P07023–P07023, cond-mat/0703762v1.
  5. A. De Masi and P. Ferrari, “A remark on the hydrodynamics of the zero-range processes,” Journal of Statistical Physics 36 no. 1-2, (1984) 81–87.
  6. E. Levine, D. Mukamel, and G. M. Schütz, “Zero-Range Process with Open Boundaries,” Journal of Statistical Physics 120 no. 5-6, (2005) 759–778, arXiv:cond-mat/0412129 [cond-mat.stat-mech].
  7. A. De Masi, S. Olla, and E. Presutti, “A Note on Fick’s Law with Phase Transitions,” Journal of Statistical Physics 175 no. 1, (2019) 203–211, arXiv:1812.05799 [cond-mat.stat-mech].
  8. R. Frassek, C. Giardinà, and J. Kurchan, “Non-compact quantum spin chains as integrable stochastic particle processes,” Journal of Statistical Physics 180 (4, 2020) 135–171, arXiv:1904.01048 [math-ph].
  9. L. N. Lipatov, “Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models,” Journal of Experimental and Theoretical Physics Letters 59 (1994) 596–599, arXiv:hep-th/9311037 [hep-th]. [Pisma Zh. Eksp. Teor. Fiz.59,571(1994)].
  10. L. D. Faddeev and G. P. Korchemsky, “High-energy QCD as a completely integrable model,” Physics Letters B 342 (1995) 311–322, arXiv:hep-th/9404173 [hep-th].
  11. S. E. Derkachov, “Baxter’s Q-operator for the homogeneous XXX spin chain,” Journal of Physics A: Mathematical and General 32 (1999) 5299–5316, arXiv:solv-int/9902015 [solv-int].
  12. N. Beisert, “The complete one loop dilatation operator of N=4 super Yang-Mills theory,” Nucl. Phys. B 676 (2004) 3–42, arXiv:hep-th/0307015.
  13. T. Sasamoto and M. Wadati, “One-dimensional asymmetric diffusion model without exclusion,” Physical Review E 58 (Oct, 1998) 4181–4190.
  14. A. M. Povolotsky, “On the integrability of zero-range chipping models with factorized steady states,” Journal of Physics A: Mathematical and Theoretical 46 no. 46, (2013) 465205, arXiv:1308.3250 [math-ph].
  15. G. Barraquand and I. Corwin, “The q𝑞qitalic_q-Hahn asymmetric exclusion process,” Annals of Applied Probability 26 no. 4, (2016) 2304–2356, arXiv:1501.03445 [math.PR].
  16. J. Tailleur, J. Kurchan, and V. Lecomte, “Mapping out-of-equilibrium into equilibrium in one-dimensional transport models,” Journal of Physics A: Mathematical and Theoretical 41 no. 50, (2008) 505001, arXiv:0809.0709 [cond-mat].
  17. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, “Macroscopic fluctuation theory,” Reviews of Modern Physics 87 no. 2, (2015) 593–636, arXiv:1404.6466 [cond-mat.stat-mech].
  18. C. Kipnis, C. Marchioro, and E. Presutti, “Heat flow in an exactly solvable model,” Journal of Statistical Physics 27 no. 1, (1982) 65–74.
  19. G. M. Schütz, “Duality relations for asymmetric exclusion processes,” Journal of Statistical Physics 86 no. 5-6, (Mar., 1997) 1265–1287.
  20. L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model,” in Relativistic gravitation and gravitational radiation. Proceedings, School of Physics, Les Houches, France, September 26-October 6, 1995, pp. pp. 149–219. 1996. arXiv:hep-th/9605187 [hep-th].
  21. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1993.
  22. R. Frassek, C. Giardinà, and J. Kurchan, “Duality and hidden equilibrium in transport models,” SciPost Physics 9 (2020) 054, arXiv:2004.12796 [cond-mat.stat-mech].
  23. R. Frassek, “Eigenstates of triangularisable open XXX spin chains and closed-form solutions for the steady state of the open SSEP,” Journal of Statistical Mechanics: Theory and Experiments 2005 (2020) 053104, arXiv:1910.13163 [math-ph].
  24. John Wiley & Sons, 2008.
  25. Y. Oono and M. Paniconi, “Steady state thermodynamics,” Progress of Theoretical Physics Supplement 130 (1998) 29–44.
  26. S. Sasa and H. Tasaki, “Steady state thermodynamics,” Journal of Statistical Physics 125 (2006) 125–224, arXiv:cond-mat/0411052 [cond-mat.stat-mech].
  27. B. Derrida, J. L. Lebowitz, and E. R. Speer, “Entropy of Open Lattice Systems,” Journal of Statistical Physics 126 no. 4-5, (2007) 1083–1108, arXiv:0704.3742 [cond-mat.stat-mech].
  28. S. Floreani, F. Redig, and F. Sau, “Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations,” arXiv:2007.08272 [math.PR].
  29. B. Derrida, J. L. Lebowitz, and E. R. Speer, “Free Energy Functional for Nonequilibrium Systems: An Exactly Solvable Case,” Physical Review Letters 87 no. 15, (2001) 150601, cond-mat/0105110v2.
  30. G. Carinci, C. Giardinà, C. Giberti, and F. Redig, “Duality for Stochastic Models of Transport,” Journal of Statistical Physics 152 no. 4, (2013) 657–697, arXiv:1212.3154 [math-ph].
  31. G. Carinci, C. Giardinà, and F. Redig, “Consistent particle systems and duality,” 1907.10583 [math.PR].
  32. F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, “Reaction - diffusion processes, critical dynamics and quantum chains,” Annals of Physics 230 (1994) 250–302, arXiv:hep-th/9302112.
  33. R. Stinchcombe and G. Schütz, “Application of operator algebras to stochastic dynamics and the Heisenberg chain,” Physical Review Letters 75 no. 1, (1995) 140.
  34. C. S. Melo, G. A. P. Ribeiro, and M. J. Martins, “Bethe ansatz for the XXX- S chain with non-diagonal open boundaries,” Nuclear Physics B 711 no. 3, (2005) 565–603, arXiv:nlin/0411038 [nlin.SI].
  35. J. de Gier and F. H. L. Essler, “Exact spectral gaps of the asymmetric exclusion process with open boundaries,” Journal of Statistical Mechanics: Theory and Experiment 2006 no. 12, (2006) 12011, arXiv:cond-mat/0609645 [cond-mat.stat-mech].
  36. N. Crampe, E. Ragoucy, and M. Vanicat, “Integrable approach to simple exclusion processes with boundaries. Review and progress,” Journal of Statistical Mechanics:Theory and Experiment 1411 no. 11, (2014) P11032, arXiv:1408.5357 [math-ph].
  37. T. Sasamoto and H. Spohn, “One-Dimensional Kardar-Parisi-Zhang Equation: An Exact Solution and its Universality,” Physical Review Letters 104 no. 23, (2010) 230602, arXiv:1002.1883 [cond-mat.stat-mech].
  38. I. Corwin, “The Kardar–Parisi–Zhang equation and universality class,” Random matrices: Theory and applications 1 no. 01, (2012) 1130001, arXiv:1106.1596 [math.PR].
  39. A. Borodin and L. Petrov, “Integrable probability: From representation theory to Macdonald processes,” Probability Surveys 11 (2014) 1–58, 1310.8007.
  40. A. Povolotsky, “Untangling of Trajectories and Integrable Systems of Interacting Particles: Exact Results and Universal Laws,” Physics of Particles and Nuclei 52 no. 2, (2021) 239–273.
  41. A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado, “Stochastic R matrix for Uq⁢(An(1))subscript𝑈𝑞superscriptsubscript𝐴𝑛1U_{q}(A_{n}^{(1)})italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ),” Nuclear Physics B 913 (2016) 248–277, arXiv:1604.08304 [math.QA].
  42. R. Frassek, “The non-compact XXZ spin chain as stochastic particle process,” Journal of Physics A: Mathematical and General 52 no. 33, (2019) 335202, arXiv:1904.02191 [math-ph].
  43. R. Frassek, “Integrable boundaries for the q-Hahn process,” arXiv:2205.10512 [math-ph].
  44. Academic press, 2014.
  45. I. Mező and M. E. Hoffman, “Zeros of the digamma function and its Barnes G-function analogue,” Integral Transforms and Special Functions 28 no. 11, (2017) 846–858.
  46. T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Physical Review 58 (1940) 1098–1113.
  47. S. E. Derkachov, “Factorization of the R-matrix. I.,” Journal of Mathematical Sciences 143 (2007) 2773–2790, arXiv:math/0503396.
  48. E. K. Sklyanin, “Boundary Conditions for Integrable Quantum Systems,” Journal of Physics A 21 (1988) 2375–289.
Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.