Exact solution of an integrable non-equilibrium particle system
Abstract: We consider the integrable family of symmetric boundary-driven interacting particle systems that arise from the non-compact XXX Heisenberg model in one dimension with open boundaries. In contrast to the well-known symmetric exclusion process, the number of particles at each site is unbounded. We show that a finite chain of $N$ sites connected at its ends to two reservoirs can be solved exactly, i.e. the factorial moments of the non-equilibrium steady-state can be written in closed form for each $N$. The solution relies on probabilistic arguments and techniques inspired by integrable systems. It is obtained in two steps: i) the introduction of a dual absorbing process reducing the problem to a finite number of particles; ii) the solution of the dual dynamics exploiting a symmetry obtained from the Quantum Inverse Scattering Method. Long-range correlations are computed in the finite-volume system. The exact solution allows to prove by a direct computation that, in the thermodynamic limit, the system approaches local equilibrium. A by-product of the solution is the algebraic construction of a direct mapping between the non-equilibrium steady state and the equilibrium reversible measure.
- Springer Science & Business Media, 2012.
- A. De Masi and E. Presutti, Mathematical methods for hydrodynamic limits. Springer, 2006.
- B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, “Exact solution of a 1D asymmetric exclusion model using a matrix formulation,” Journal of Physics A: Mathematical and General 26 no. 7, (1993) 1493–1517.
- B. Derrida, “Non-equilibrium steady states: fluctuations and large deviations of the density and of the current,” Journal of Statistical Mechanics: Theory and Experiment 2007 no. 07, (2007) P07023–P07023, cond-mat/0703762v1.
- A. De Masi and P. Ferrari, “A remark on the hydrodynamics of the zero-range processes,” Journal of Statistical Physics 36 no. 1-2, (1984) 81–87.
- E. Levine, D. Mukamel, and G. M. Schütz, “Zero-Range Process with Open Boundaries,” Journal of Statistical Physics 120 no. 5-6, (2005) 759–778, arXiv:cond-mat/0412129 [cond-mat.stat-mech].
- A. De Masi, S. Olla, and E. Presutti, “A Note on Fick’s Law with Phase Transitions,” Journal of Statistical Physics 175 no. 1, (2019) 203–211, arXiv:1812.05799 [cond-mat.stat-mech].
- R. Frassek, C. Giardinà, and J. Kurchan, “Non-compact quantum spin chains as integrable stochastic particle processes,” Journal of Statistical Physics 180 (4, 2020) 135–171, arXiv:1904.01048 [math-ph].
- L. N. Lipatov, “Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models,” Journal of Experimental and Theoretical Physics Letters 59 (1994) 596–599, arXiv:hep-th/9311037 [hep-th]. [Pisma Zh. Eksp. Teor. Fiz.59,571(1994)].
- L. D. Faddeev and G. P. Korchemsky, “High-energy QCD as a completely integrable model,” Physics Letters B 342 (1995) 311–322, arXiv:hep-th/9404173 [hep-th].
- S. E. Derkachov, “Baxter’s Q-operator for the homogeneous XXX spin chain,” Journal of Physics A: Mathematical and General 32 (1999) 5299–5316, arXiv:solv-int/9902015 [solv-int].
- N. Beisert, “The complete one loop dilatation operator of N=4 super Yang-Mills theory,” Nucl. Phys. B 676 (2004) 3–42, arXiv:hep-th/0307015.
- T. Sasamoto and M. Wadati, “One-dimensional asymmetric diffusion model without exclusion,” Physical Review E 58 (Oct, 1998) 4181–4190.
- A. M. Povolotsky, “On the integrability of zero-range chipping models with factorized steady states,” Journal of Physics A: Mathematical and Theoretical 46 no. 46, (2013) 465205, arXiv:1308.3250 [math-ph].
- G. Barraquand and I. Corwin, “The q𝑞qitalic_q-Hahn asymmetric exclusion process,” Annals of Applied Probability 26 no. 4, (2016) 2304–2356, arXiv:1501.03445 [math.PR].
- J. Tailleur, J. Kurchan, and V. Lecomte, “Mapping out-of-equilibrium into equilibrium in one-dimensional transport models,” Journal of Physics A: Mathematical and Theoretical 41 no. 50, (2008) 505001, arXiv:0809.0709 [cond-mat].
- L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, “Macroscopic fluctuation theory,” Reviews of Modern Physics 87 no. 2, (2015) 593–636, arXiv:1404.6466 [cond-mat.stat-mech].
- C. Kipnis, C. Marchioro, and E. Presutti, “Heat flow in an exactly solvable model,” Journal of Statistical Physics 27 no. 1, (1982) 65–74.
- G. M. Schütz, “Duality relations for asymmetric exclusion processes,” Journal of Statistical Physics 86 no. 5-6, (Mar., 1997) 1265–1287.
- L. D. Faddeev, “How algebraic Bethe ansatz works for integrable model,” in Relativistic gravitation and gravitational radiation. Proceedings, School of Physics, Les Houches, France, September 26-October 6, 1995, pp. pp. 149–219. 1996. arXiv:hep-th/9605187 [hep-th].
- Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1993.
- R. Frassek, C. Giardinà, and J. Kurchan, “Duality and hidden equilibrium in transport models,” SciPost Physics 9 (2020) 054, arXiv:2004.12796 [cond-mat.stat-mech].
- R. Frassek, “Eigenstates of triangularisable open XXX spin chains and closed-form solutions for the steady state of the open SSEP,” Journal of Statistical Mechanics: Theory and Experiments 2005 (2020) 053104, arXiv:1910.13163 [math-ph].
- John Wiley & Sons, 2008.
- Y. Oono and M. Paniconi, “Steady state thermodynamics,” Progress of Theoretical Physics Supplement 130 (1998) 29–44.
- S. Sasa and H. Tasaki, “Steady state thermodynamics,” Journal of Statistical Physics 125 (2006) 125–224, arXiv:cond-mat/0411052 [cond-mat.stat-mech].
- B. Derrida, J. L. Lebowitz, and E. R. Speer, “Entropy of Open Lattice Systems,” Journal of Statistical Physics 126 no. 4-5, (2007) 1083–1108, arXiv:0704.3742 [cond-mat.stat-mech].
- S. Floreani, F. Redig, and F. Sau, “Orthogonal polynomial duality of boundary driven particle systems and non-equilibrium correlations,” arXiv:2007.08272 [math.PR].
- B. Derrida, J. L. Lebowitz, and E. R. Speer, “Free Energy Functional for Nonequilibrium Systems: An Exactly Solvable Case,” Physical Review Letters 87 no. 15, (2001) 150601, cond-mat/0105110v2.
- G. Carinci, C. Giardinà, C. Giberti, and F. Redig, “Duality for Stochastic Models of Transport,” Journal of Statistical Physics 152 no. 4, (2013) 657–697, arXiv:1212.3154 [math-ph].
- G. Carinci, C. Giardinà, and F. Redig, “Consistent particle systems and duality,” 1907.10583 [math.PR].
- F. C. Alcaraz, M. Droz, M. Henkel, and V. Rittenberg, “Reaction - diffusion processes, critical dynamics and quantum chains,” Annals of Physics 230 (1994) 250–302, arXiv:hep-th/9302112.
- R. Stinchcombe and G. Schütz, “Application of operator algebras to stochastic dynamics and the Heisenberg chain,” Physical Review Letters 75 no. 1, (1995) 140.
- C. S. Melo, G. A. P. Ribeiro, and M. J. Martins, “Bethe ansatz for the XXX- S chain with non-diagonal open boundaries,” Nuclear Physics B 711 no. 3, (2005) 565–603, arXiv:nlin/0411038 [nlin.SI].
- J. de Gier and F. H. L. Essler, “Exact spectral gaps of the asymmetric exclusion process with open boundaries,” Journal of Statistical Mechanics: Theory and Experiment 2006 no. 12, (2006) 12011, arXiv:cond-mat/0609645 [cond-mat.stat-mech].
- N. Crampe, E. Ragoucy, and M. Vanicat, “Integrable approach to simple exclusion processes with boundaries. Review and progress,” Journal of Statistical Mechanics:Theory and Experiment 1411 no. 11, (2014) P11032, arXiv:1408.5357 [math-ph].
- T. Sasamoto and H. Spohn, “One-Dimensional Kardar-Parisi-Zhang Equation: An Exact Solution and its Universality,” Physical Review Letters 104 no. 23, (2010) 230602, arXiv:1002.1883 [cond-mat.stat-mech].
- I. Corwin, “The Kardar–Parisi–Zhang equation and universality class,” Random matrices: Theory and applications 1 no. 01, (2012) 1130001, arXiv:1106.1596 [math.PR].
- A. Borodin and L. Petrov, “Integrable probability: From representation theory to Macdonald processes,” Probability Surveys 11 (2014) 1–58, 1310.8007.
- A. Povolotsky, “Untangling of Trajectories and Integrable Systems of Interacting Particles: Exact Results and Universal Laws,” Physics of Particles and Nuclei 52 no. 2, (2021) 239–273.
- A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado, “Stochastic R matrix for Uq(An(1))subscript𝑈𝑞superscriptsubscript𝐴𝑛1U_{q}(A_{n}^{(1)})italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT ),” Nuclear Physics B 913 (2016) 248–277, arXiv:1604.08304 [math.QA].
- R. Frassek, “The non-compact XXZ spin chain as stochastic particle process,” Journal of Physics A: Mathematical and General 52 no. 33, (2019) 335202, arXiv:1904.02191 [math-ph].
- R. Frassek, “Integrable boundaries for the q-Hahn process,” arXiv:2205.10512 [math-ph].
- Academic press, 2014.
- I. Mező and M. E. Hoffman, “Zeros of the digamma function and its Barnes G-function analogue,” Integral Transforms and Special Functions 28 no. 11, (2017) 846–858.
- T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Physical Review 58 (1940) 1098–1113.
- S. E. Derkachov, “Factorization of the R-matrix. I.,” Journal of Mathematical Sciences 143 (2007) 2773–2790, arXiv:math/0503396.
- E. K. Sklyanin, “Boundary Conditions for Integrable Quantum Systems,” Journal of Physics A 21 (1988) 2375–289.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.