Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Finite time extinction for a critically damped Schr{ö}dinger equation with a sublinear nonlinearity (2210.04493v4)

Published 10 Oct 2022 in math.AP

Abstract: This paper completes some previous studies by several authors on the finite time extinction for nonlinear Schr{\"o}dinger equation when the nonlinear damping term corresponds to the limit cases of some ``saturating non-Kerr law'' $F(|u|2)u=\frac{a}{\varepsilon+(|u|2)\alpha}u,$ with $a\in\mathbb{C},$ $\varepsilon\geqslant0,$ $2\alpha=(1-m)$ and $m\in[0,1).$ Here we consider the sublinear case $0<m\<1$ with a critical damped coefficient: $a\in\mathbb{C}$ is assumed to be in the set $D(m)=\big\{z\in\mathbb{C}; \; \mathrm{Im}(z)\>0 \text{ and } 2\sqrt{m}\mathrm{Im}(z)=(1-m)\mathrm{Re}(z)\big}.$ Among other things, we know that this damping coefficient is critical, for instance, in order to obtain the monotonicity of the associated operator (see the paper by Liskevich and Perel'muter [16] and the more recent study by Cialdea and Maz'ya [14]). The finite time extinction of solutions is proved by a suitable energy method after obtaining appropiate a priori estimates. Most of the results apply to non-necessarily bounded spatial domains.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.