Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Strong stabilization of damped nonlinear Schr{ö}dinger equation with saturation on unbounded domains (2404.06811v1)

Published 10 Apr 2024 in math.AP

Abstract: We consider the damped nonlinear Schr\''{o}dinger equation with saturation: i.e., the complex evolution equation contains in its left hand side, besides the potential term $V(x)u,$ a nonlinear term of the form $\mathrm{i}\mu u(t,x)/|u(t,x)|$ for a given parameter $\mu >0$ (arising in optical applications on non-Kerr-like fibers). In the right hand side we assume a given forcing term $f(t,x).$ The important new difficulty, in contrast to previous results in the literature, comes from the fact that the spatial domain is assumed to be unbounded. We start by proving the existence and uniqueness of weak and strong solutions according the regularity of the data of the problem. The existence of solutions with a lower regularity is also obtained by working with a sequence of spaces verifying the Radon-Nikod\'{y}m property. Concerning the asymptotic behavior for large times we prove a strong stabilization result. For instance, in the one dimensional case we prove that there is extinction in finite time of the solutions under the mere assumption that the $L\infty$-norm of the forcing term $f(t,x)$ becomes less than $\mu$ after a finite time. This presents some analogies with the so called feedback \textit{bang-bang controls} $v$ (here $v=-\mathrm{i}\mu u/|u|+f).$

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.