Finite time extinction for the strongly damped nonlinear Schr{ö}dinger equation in bounded domains (2003.08105v2)
Abstract: We prove the \textit{finite time extinction property} $(u(t)\equiv 0$ on $\Omega$ for any $t\ge T_\star,$ for some $T_\star>0)$ for solutions of the nonlinear Schr\"{o}dinger problem ${\rm i} u_t+\Delta u+a|u|{-(1-m)}u=f(t,x),$ on a bounded domain $\Omega$ of $\mathbb{R}N,$ $N\le 3,$ $a\in\mathbb{C}$ with $\Im(a)>0$ (the damping case) and under the crucial assumptions $0<m<1$ and the dominating condition $2\sqrt m\,\Im(a)\ge(1-m)|\Re(a)|.$ We use an energy method as well as several a priori estimates to prove the main conclusion. The presence of the non-Lipschitz nonlinear term in the equation introduces a lack of regularity of the solution requiring a study of the existence and uniqueness of solutions satisfying the equation in some different senses according to the regularity assumed on the data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.