Papers
Topics
Authors
Recent
2000 character limit reached

Tensor Completion via Tensor Train Based Low-Rank Quotient Geometry under a Preconditioned Metric

Published 11 Sep 2022 in math.OC | (2209.04786v3)

Abstract: This paper investigates the low-rank tensor completion problem, which is about recovering a tensor from partially observed entries. We consider this problem in the tensor train format and extend the preconditioned metric from the matrix case to the tensor case. The first-order and second-order quotient geometry of the manifold of fixed tensor train rank tensors under this metric is studied in detail. Algorithms, including Riemannian gradient descent, Riemannian conjugate gradient, and Riemannian Gauss-Newton, have been proposed for the tensor completion problem based on the quotient geometry. It has also been shown that the Riemannian Gauss-Newton method on the quotient geometry is equivalent to the Riemannian Gauss-Newton method on the embedded geometry with a specific retraction. Empirical evaluations on random instances as well as on function-related tensors show that the proposed algorithms are competitive with other existing algorithms in terms of recovery ability, convergence performance, and reconstruction quality.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.