Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

A Riemannian trust-region method for low-rank tensor completion (1703.10019v1)

Published 29 Mar 2017 in math.NA, math.DG, and math.OC

Abstract: The goal of tensor completion is to fill in missing entries of a partially known tensor (possibly including some noise) under a low-rank constraint. This may be formulated as a least-squares problem. The set of tensors of a given multilinear rank is known to admit a Riemannian manifold structure, thus methods of Riemannian optimization are applicable. In our work, we derive the Riemannian Hessian of an objective function on the low-rank tensor manifolds using the Weingarten map, a concept from differential geometry. We discuss the convergence properties of Riemannian trust-region methods based on the exact Hessian and standard approximations, both theoretically and numerically. We compare our approach to Riemannian tensor completion methods from recent literature, both in terms of convergence behaviour and computational complexity. Our examples include the completion of randomly generated data with and without noise and recovery of multilinear data from survey statistics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.