Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On the Tate conjecture for divisors on varieties with $h^{2,0} = 1$ in positive characteristics (2207.11904v4)

Published 25 Jul 2022 in math.AG and math.NT

Abstract: We prove that the Tate conjecture for divisors is ''generically true'' for mod p reductions of complex projective varieties with $h{2, 0} = 1$, under a mild assumption on moduli. By refining this general result, we establish a new case of the BSD conjecture over global function fields, and the Tate conjecture for a class of general type surfaces of geometric genus 1.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.