Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A remark on uniform boundedness for Brauer groups (1801.07322v1)

Published 22 Jan 2018 in math.AG and math.NT

Abstract: The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.

Summary

We haven't generated a summary for this paper yet.