Papers
Topics
Authors
Recent
Search
2000 character limit reached

A remark on uniform boundedness for Brauer groups

Published 22 Jan 2018 in math.AG and math.NT | (1801.07322v1)

Abstract: The Tate conjecture for divisors on varieties over number fields is equivalent to finiteness of $\ell$-primary torsion in the Brauer group. We show that this finiteness is actually uniform in one-dimensional families for varieties that satisfy the Tate conjecture for divisors -- e.g. abelian varieties and $K3$ surfaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.