Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

On the Tate and Mumford-Tate conjectures in codimension one for varieties with h^{2,0}=1 (1504.05406v2)

Published 21 Apr 2015 in math.AG

Abstract: We prove the Tate conjecture for divisor classes and the Mumford-Tate conjecture for the cohomology in degree 2 for varieties with $h{2,0}=1$ over a finitely generated field of characteristic 0, under a mild assumption on their moduli. As an application of this general result, we prove the Tate and Mumford-Tate conjectures for some classes of algebraic surfaces with $p_g=1$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.