Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-isomorphic smooth compactifications of the moduli space of cubic surfaces (2207.03533v3)

Published 7 Jul 2022 in math.AG

Abstract: The moduli space of complex cubic surfaces has three different, but isomorphic, compact realizations: as a GIT quotient, as a Baily--Borel compactification of a ball quotient, and as a compactified $K$-moduli space. From all three perspectives, there is a unique boundary point corresponding to non-stable surfaces. From the GIT point of view, to deal with this point, it is natural to consider the Kirwan blowup, while from the ball quotient point of view it is natural to consider the toroidal compactification. Both these spaces have the same cohomology and and it is therefore natural to ask whether they are isomorphic. Here we show that this is in fact not the case. Indeed, we show the more refined statement that both spaces are equivalent in the Grothendieck ring, but not $K$-equivalent. Along the way, we establish a number of results and techniques for dealing with singularities and canonical classes of Kirwan blowups and toroidal compactifications of ball quotients.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.