Papers
Topics
Authors
Recent
Search
2000 character limit reached

Compactifications of the Eisenstein ancestral Deligne-Mostow variety

Published 27 Mar 2024 in math.AG and math.NT | (2403.18345v2)

Abstract: All arithmetic non-compact ball quotients by Deligne-Mostow's unitary monodromy group arise as sub-ball quotients of either of two spaces called ancestral cases, corresponding to Gaussian or Eisenstein Hermitian forms respectively. In our previous paper, we investigated the compactifications of the Gaussian Deligne-Mostow variety. Here we work on the remaining case, namely the ring of Eisenstein integers, which is related to the moduli space of unordered 12 points on $\mathbb P1$. In particular, we show that Kirwan's partial resolution of the moduli space is not a semi-toroidal compactification and Deligne-Mostow's period map does not lift to the unique toroidal compactification. We give two interpretations of these phenomena in terms of the log minimal model program and automorphic forms. As an application, we prove that the above two compactifications are not (stacky) derived equivalent, as the $DK$-conjecture predicts. Furthermore, we construct an automorphic form on the moduli space of non-hyperelliptic curves of genus 4, which is isogenous to the Eisenstein Deligne-Mostow variety, giving another intrinsic proof, independent of lattice embeddings, of a result by Casalaina-Martin, Jensen and Laza.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.