Compactifications of moduli space of (quasi-)trielliptic K3 surfaces (2212.14635v1)
Abstract: We study the moduli space $\mathcal{F}{T_1}$ of quasi-trielliptic K3 surfaces of type I, whose general member is a smooth bidegree $(2,3)$-hypersurface of $\mathbb{P}1\times \mathbb{P}2$. Such moduli space plays an important role in the study of the Hassett-Keel-Looijenga program of the moduli space of degree $8$ quasi-polarized K3 surfaces. In this paper, we consider several natural compactifications of $\mathcal{F}{T_1}$, such as the GIT compactification and arithmetic compactifications. We give a complete analysis of GIT stability of $(2,3)$-hypersurfaces and provide a concrete description of the boundary of the GIT compactification. For the Baily--Borel compactification of the quasi-trielliptic K3 surfaces, we also compute the configurations of the boundary by classifying certain lattice embeddings. As an application, we show that $(\mathbb{P}1\times \mathbb{P}2,\epsilon S)$ with small $\epsilon$ is K-stable if $S$ is a K3 surface with at worst ADE singularities. This gives a concrete description of the boundary of the K-stability compactification via the identification of the GIT stability and the K-stability. We also discuss the connection between the GIT, Baily--Borel compactification, and Looijenga's compactifications by studying the projective models of quasi-trielliptic K3 surfaces.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.