Papers
Topics
Authors
Recent
2000 character limit reached

TransBoost: Improving the Best ImageNet Performance using Deep Transduction

Published 26 May 2022 in cs.CV, cs.AI, and cs.LG | (2205.13331v4)

Abstract: This paper deals with deep transductive learning, and proposes TransBoost as a procedure for fine-tuning any deep neural model to improve its performance on any (unlabeled) test set provided at training time. TransBoost is inspired by a large margin principle and is efficient and simple to use. Our method significantly improves the ImageNet classification performance on a wide range of architectures, such as ResNets, MobileNetV3-L, EfficientNetB0, ViT-S, and ConvNext-T, leading to state-of-the-art transductive performance. Additionally we show that TransBoost is effective on a wide variety of image classification datasets. The implementation of TransBoost is provided at: https://github.com/omerb01/TransBoost .

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.